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Abstract-A square wavegnide with periodic septnrns is considered

with a view towards determining the parameters of a structure which sup-

presses three of four possible propagating modes. The analysis is presented

in two parts, the first of which is concerned with the isolated septum.

Using available techniquw, semi-infinite scattering mahices are deter-

mined for the semi-infinite septom for arbitrary TE~o, TILw, and TMN1

iucident modes. These are used to derive Fredholm matrix equations

which yield the field everywhere near the finite length septum. The leading

terms of the inverted equations are the far-field transmission and reflec-

tion coefficients. The solutions are evaluated for several frequencies, and

fifth degree polynomials are fitted for the computation of tk and S12.

The analysis for the TE, omode is applicable to an arbitrary height wave-

gnide and may be used without modification for the “finite length” sep-

tum in conventional wavegnide.

The second part is concerned with the periodic wavegnide and assumes

that the septums are far apart. A contour chart is introduced to visualize

the performance of the periodic structure. The chart is especially useful

when more than one propagating mode is involved and simplifies the design

problem so that the parameters of practical structures may be obtained

with little effort.

INTRODUCTION

I

N RECENT YEARS there has been a considerable

effort [1 ]–[4] to develop waveguides for use in the

higher microwave frequency range, which are capable

of transmitting large amounts of power with low attenuation.

Since power capacity is proportional to cross-sectional area,

this usually leads to large waveguides with multimode ca-

pability, or to open waveguides. For many applications, such

as airborne radar, open structures are not feasible. Con-

versely, oversize waveguides inevitably have imperfections

which induce unwanted modes.

Paralleling waveguides can increase power capacity, but

with no reduction in attenuation. If the parallel waveguides

are arranged to have common walls, with opposite current

flow on each side, PR losses may be reduced by eliminating

the common wall. For two rectangular waveguides in

parallel, the result is a square waveguide; many such rec-

tangular waveguides in parallel produce a tall waveguide.

Completely eliminating the common walls creates structures

which are again capable of multimode propagation. Thus

partial elimination is called for, leading to a structure with

septums at periodic intervals.
The attenuation of a rectangular waveguide is 45 to 61

percent greater than that of a square waveguide with no
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septums. Thus, for certain applications, square waveguide

with short, widely spaced septums may be justified, an~ will

be considered here.

Rectangular waveguides are normally operated in the TEIO

mode between 1.24 and 1.87 f... When the guide is enlarged

to a square shape, three additional modes are possible: the

TEOI mode over the same band as the TE1O mode, and the

TE,, and TMII modes whose cutoff frequency is 1.414 that

of the TE1O mode. Here it is assumed that the TEO1 mode is

the desired propagating mode and that the TE1O, TE1l, and

TMII modes are to be rejected. This permits the analysis

for the TEIO mode to apply directly to the H-plane finite-

length septum problem in conventional rectangular wave-

guide.

Thin septums in the y–z plane are transparent to the TEOI

mode and no further analysis for this mode is required. The

reduction of attenuation is equal to the difference in attenua-

tion of square and rectangular waveguide times the factor,

D/L’ = 1– (L/L’), where D is the distance between septums,

L is the septum length, and L’ is the period of the structure.

The design engineer’s main concern is to choose the short-

est possible septum length and the largest spacings which,

at the same time, have a maximum inhibiting effect on the

undesired modes. The analysis for these modes can be re-

duced to determining the scattering parameters of isolated

septums for subsequent determination of the stopbands of

the periodic structure.

THE SCATTERING MATRIX APPROACH

Consider a geometrically symmetrical 2N-port with even

or odd excitation. The field scattered from one port is the

same as if the structure is bisected with a magnetic or

electric wall, and excited from one side only. It has been

shown [5] that the scattering matrix of the 2N-port is re-

ducible to combinations of the reflection matrices obtained

from the bisected structure. Let a be an N-vector represent-

ing the amplitude of the modes incident on the bisected

structure, 6 an N-vector representing the amplitude of the

reflected modes. Then:

Z = rea
0

(1)

where r; is the reflection matrix and the subscripts indicate

even or odd excitation (magnetic or electric walls for TE

modes).

For the symmetric 2N-port of Fig. 1
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Fig. 1. A symmetric 2N-port.

s,, = t332= *(re+’ ro)
S3 = S7 = +(re – rO).

In three excellent reports, Pace and Mittra [6]-[8] intro-

duced the Generalized Scattering Matrix which includes the

evanescent modes as well as the propagating modes. Assum-

ing generalized scattering matrices, (1) becomes an infinite

set of equations, where the first N-components of a and 5

are the amplitudes of the propagating modes and the re-

maining terms represent the amplitude of the evanescent

modes.

It follows from (2) that for N= 1, the far-field reflection
and transmission coefficients, (r and T) are +(r’ell+ Ih)

and ~(rell — Ik@, respectively. Thus, by considering the

problem of the bisected structure, it is possible to determine

the fields everywhere, as well as I’ and ~.

THE BISECTED STRUCTURE

Consider the bisected septum of Fig. 2, with z= O located

at the leading edge of the septum. The vectors d and b are

related by the partitioned matrix:

El]=[: :]~] (3)
The elements of the submatrices, S,,, are obtained by

considering the semi-infinite septum problem, and will be

discussed in a later section.

From Fig. 2

iiB z ?“.TBbB
0

(ic = r.Tc6c (4)
0

where

TB =

e–7B IL

o
e–?BzL

e–?B ,L

o

(5)
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Fig. 2. The bisected structure, with a magnetic or an electric wall.

and r,= +1, rO= — 1. Tc is similar to TB, and is equal to it

when the septum is centered. Then (3) becomes:

[6.7 ~SAA SAB 8A CT ~~A ~

111~B = SBA SBB SBC

1[ 1

rTBi$B. (6)

h fi’cA 8CB 8CC r Tc SC

The present analysis will restrict the problem to centered

septums and to incident modes affected by the septum.

The latter condition permits dA and bA to be restricted to

modes having transverse E-fields which are symmetrical in x
about the septum. With this restriction, ~~, = ~c. = P,;

TB = Tc= T and 6. and 5C are related by ~B = I& where II

is a diagonal matrix. 11 is the identity matrix, or the identity

matrix with the even diagonal terms negative, depending on

the choice of the x= O position. In either event, 11–1= H.

With this understanding, the second equation of(6) becomes:

6B = fl~A(zA + r(SBB + SBCII) T~B (7)

where use has been made of the fact that both T and II are

diagonal and commute. This is a Fredholm matrix equation,

and can be solved for bB if none of its ei~envalues are equal—
to one. This was shown to be true b; Pace and

Then

5B = [1 – r(SBB + SBCII) T]–lSBA~A

and

5A = SAAGA

Mi(tra.

(8)

+r(SAB + SACII) TII – T(SBB+ sBC~O T1-WBA~A. (9)

THE UNBISECTED STRUCTURE

If tiA k replaced by 1, it is necessary to replace 6A by I’, or

r., depending on r. or ro. Combining this with (8) and (9),

the results for the complete septum without the bisecting

wall are:

S$~ = SAA + i(sAB + SACII)T

“{[1 – (SBB + ~BC~~)T]-’ SBA ~loa)

– [~ + (8BB + 8Bcl~) T]-’ }

“{[I – (SBB + SBC~~)T]-l SBA (lob)

+ [1 + (SBB + 8BC~~) T]-’ )
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The field in the septum region is the sum of the fields ob-

tained from the solution of the even and odd excitation prob-

lem, or from (8)

~B ..biseotsd =
septum

– [1+ (ASBB + sBdoT]-I}sBAaA. (llb)

THE MATRIX ELEMENTS

Let the vectors &, dB, or & be restricted so that two are

null vectors and the third d, is the unit vector corresponding

to zero for all but the Ah element, which is 1.0. From (3),

the vectors 6A, 6B, and & are each column vectors of the

submatrices SA., SB., and Sc~. Then, to obtain the matrix

elements, it is only necessary to assume a single mode inci-

dent on the edge of the semi-infinite septum from one of the

three regions. The amplitudes of the modes scattered in the

three regions become the elements of one column of three of

the submatrices of(3). The remaining six matrices are deter-

mined by changing v from A to B to C.

a) The TENO Fields and Matrix Elements: This problem

has been discussed by Hurd and Gruenberg [9] for the TENO

modes only, assuming the simultaneous incidence of the

lowest-order mode in each of the three regions, and a sep-

tum location such that b/a is irrational. It is a relatively sim-

ple matter to generalize their results for any incident mode,

and to allow for the degeneracy which results when b/a= ~.

Let the transverse E-fields be expanded in a Fourier series

with respect to Fig. 3 and the following modal coordinate

sets:

{
@Ahn=j?sin((2n- l)~)}n

Then the incident and reflected transverse E-fields in Region

A are

co

Eimide.t A = T aA%~Ahnf?-rAh=z (13a)
%=1

Er.fkt.d A = ~ bA.~Ahne+’.4hnz (13b)
71=1

where

~Ahfi=an=[((2n-1+k021’2‘14a)

ElT

~
a A

1

*
x b

I--.J
jz

Fig. 3. The semi-iniinite septum.

There are similar equations for regions B and C’, providing

~Bhn = YC~n
‘Qn=[(:)’-ko’l’” ‘14b)

Note that the coefficients from (13a) and (13b) are the

elements of the semi-infinite VeCtO13 6A and 6A. For this

choice of geometric coordinate system, the matrix 11 be-

comes

IIZJ = (– l)J+%lJ.

The elements of the matrices of (10) are:

SAAXJ = (– l)r+J
rh(a~, —a.r)

F,
~~(—O!J,—CIJ)

where:

1) h(t, n) =
dt, on)

“’X’[-H(i – M&%)

2) r& d is the residue of h(& q) at the pole g

4) 7r(& a.) = H (an – ~) a
.=1 (2n – l)7r”

‘XP[(25J
5) Fl, F,, Fz, and F4 are factors which will be

F, (15)

(16)

(17)

(18)

used to
relate the TE problem to the TM problem. Here they

are equal to one.

b) The TENI Problem: The TENI solution is formally iden-

tical to the TENO solution if the modal coordinates are

chosen as follows:
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{

1 (2n – l)TX ‘lr’y
@A,n = – — Cos

2n–1
sin — 2

a a

+ sin (2n – l)7rz

}
Cos ‘~ g

a a.

{

1 rmx W
@B,,n= – —cos —sin —~

2n b a

and if k$ in an and & is replaced by ko2—(r/a)’.

c) The TMN1 Fields and Matrix Elements: The approach

of Hurd and Gruenberg may also be used for the field

analysis of the TMN1 mode problem, but it is not quite as

straightforward because the transverse fields have two com-

ponents instead of one as in the TENO problem. The main

effect of the additional field component is in the determina-

tion of two constants in their “function-theoretic” aP-

preach. For the TENO problem, the “edge condition” [10]

allows one constant to be zero. For the TMN1 problem, this

is not the case and a series expansion for EV can be shown

to be uniformly convergent in the aperture and at the end

points. This expansion converges to E, at all points in the

aperture and must also converge to Eu at the end points.

Thus, the additional equation is obtained by equating this

expansion to zero at the septum edge.

Let the transverse H-fields be expanded in a Fourier

series with respect to the following modal coordinate sets:

{ 1 [-sin((2n-15)c0s:’‘A’”=~1+ (2n– 1)2

+(2n-l)COS((2.-1 )~)sin~~]}n

{
1

[

mrx ~Y

‘Be”= < l+4n2
—sin —– cos — .t

ba

rmx
+2n COST sin Zji

1}a.

{

1

[“

nm(.v – b) Ty

“em = ~l+4n2 ‘Sin b
Cos— t

a

+~n cofj
mr(x – b)

b
sin ‘~ f

1}
. (20)

an

In (13a) and (13b) replace E by H and in (14) replace

ko’ by k?– (r/a)z. Then the vectors a and 6 represent the

amplitude of the transverse H-modes instead of the trans-
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verse E-modes. The elements of the matrices of (10) are

given by (15) and the factors F~ take the following form:

l+al:(–aJ)

d

1 + (2J – 1)’
FI =

~o

1 + (21 – 1)’
1 – aJ: (–ay)

Co

1 + a* E (f?~)

d

1 + 4J2
F2. =

60

1 + (21 – 1)2
1 + pJ ~ (pJ)

co

1 +:(+

d1 + (2J – 1)’
F4 =

co

1 + 412
1 – aJ:(–aJ)

~o

where

[
: (T) = ~ ‘(:ko’7)+‘(–iko’~q

ilo h(zkl),q) – h(–iko, ~)
and

(21)

(22)

Inverting the Operator Equation

The solution of (7) necessitates the inversion of a semi-

infinite matrix operator of the form Mt (s~’ + SBcII,)T,

where A= 1.0. One approach is to expand this in a Neumann

series, which is permissible if I &\ <1.0 for all eigenvalues,

x.. This leads to the kind of series usually associated with

multiple reflections between discontinuities, as in a plane

wave passing through a dielectric slab. Indeed, Pace [6]

bases his work on a multiple reflection approach, then proves

convergence by proving that all I kn \ <1.0.

It is inevitable that the matrices in the Neumann series

must be truncated. It becomes just as practical to truncate

the operator (SBB+SBCH)T directly, at say l-terms. This

has the effect of assuming that only the first l-modes have

any significant effect beyond the immediate vicinity of the

edge of the septum. Indeed, if the septum is quite long, only

the lowest mode is present at the trailing edge of the septum.

More terms become significant as the septum becomes
shorter, or frequency increases toward the cutoff frequency

of the small waveguides in the septum region.

It is reasonable to use the mode decay rate as an indica-

tor of how many terms to include in the truncated matrix.
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Fig. 4. A septum in a single mount.

This approach was used, with the matrix order J being

chosen when exp( —,6JL) = 0.5 X 10–0, but with J never less

than two. This rule of thumb proved to be quite practical,

since increasing the size of the matrix affected only the

fifth significant decimal place of the reflection and trans-

mission coefficient.

It would appear that truncating the matrix would yield

inexact solutions. This is not precisely true, because (barring

computer round-off errors) a solution is obtainable to any

desired degree of accuracy by successively increasing the

size of the truncated matrix and taking the limit of the se-

quence generated.

Single Septum Results

a) TE1OIncident Mode: For experimental work at X-band,

a 0.900 inch (2.286 cm) square waveguide was chosen, with

septums made from 0.010 inch (0.0254 cm) copper stock, in

lengths ranging from ~ inch to 1 inch in ~ inch (0.3175 cm)

increments. A simple split waveguide was used as a septum

holder, as shown in Fig. 4. The reflection and transmission

coefficients were verified by measuring the argument of S11,

and the absolute value of S12, since: 1) I SUI 2+ \ SIZI 2= 1.0

and 2) Arg Sll = Arg SIZ + 90° for all symmetrical structures.

Figure 5 shows the measured and calculated insertion loss

for several frequencies. The curves marked “thin septum”

were computed from the equations given and do not agree

with the measured data. This disagreement was traced to the
finite thickness of the septum, which altered the values of

{~~.~ used in the T-matrix of (5). The curves marked “thick

septum” were computed by modifying the T-matrix to

allow for the septum thickness, but still assuming an in-

finitely thin septum for determining the elements of the

scattering matrices.

A further small deviation was noted for the shorter sep-
tums. This was a secondary effect and was traced to the

septum edges, which were blunt. Three septums were
tapered at a 5° angle, yielding insertion losses that were al-

most exactly as calculated.
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Figure’ 6 shows the computed and measured values of

Arg S at the same frequencies as previously mentioned.l

There is a fairly good agreement, with almost all of the dis-

crepancies attributable to the blunt septum edge.

b) T1311 Incident Mode: The calculated results for the

insertion loss and the argument of the reflection coefficient

for the TEII mode are presented in Figs. 7 and 8.

c) TiW1l Incident Mode: Figures 9 and 10 show the same

data for the TMII mode, but presented in slightly different

form. Note that for a constant frequency, increasing the

septum length always increases the insertion loss. However,

for very short septums of fixed length, increasing the fre-

quency does not always reduce the insertion loss.

The frequency range of interest is above the cutoff fre-

quency fco, a, of the main waveguide, and below that of

the smaller guides in the septum region f~~,t81.Near f.., al,
the insertion loss of the septum is quite high, and approaches

infinity. Close examination of the elements in the first col-

umn of SBA indicates that they are all proportional to al.

Thus, as al approaches zero at cutoff, the insertion loss

increases. Since SBA is the transmission matrix at the leading

edge of the septum, low-frequency attenuation is increased

by the field behavior at this edge, as well as the attenuation

in the septum region itself.

The increase of insertion loss at the high end of the band

is partially due to a similar phenomenon at the trailing edge

of the septum. One would expect the insertion loss to de-

crease as the frequency increases toward the cutoff frequency

of the lowest-order mode in the septum region. Offsetting

this is the fact that for very small values of 01, the leading

term of (SBA+SACII) decreases faster than exp(–/3J) in-

creases. This is comparable to less transmission of energy,

via this mode, past the trailing edge of the septum. For short

septums, several modes in the septum region contribute to

the total energy transport. Near midband, the lowest-order

mode carries a significant proportion of the total. As fre-

quency increases, this mode becomes less important as more

of it is reflected at the trailing edge of the septum. Finally,

the second mode becomes the dominant contributor to

energy transport. But this mode traverses the septum region

as exp( –PZL), which is attenuated much more than the first

mode. Consequently, the total insertion loss increases again.

Fitted Curves

It is not a simple matter to evaluate the formula for the

elements of the various matrices. The equations are quite

involved and require considerable computer time. For

facility of design, fifth degree polynomials have been fitted

to the data computed for several frequencies. Once a design

engineer chooses a septum length, (23) can be used to com-

pute S11.

I The abscissa of Figs. 6, 8, 9, and 10 is normalized with respect to
the guide wavelength & of the corresponding lowest-order TE or TM
mode in region A. This normalization was introduced to separate
curves which would otherwise cross one another and be difficult to
interpret.
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Fig. 9. Single septum insertion loss for the TMII mode.

J$l(f’) = sJSll(N)f’~-’ (23)
N=l

where

f’ = fLfw = Llh””

and the S’1I(N) are presented in Tables I, II, and III for the

TE,O, TEII, and TM1l modes. A similar equation is valid for

S,,, using the S12(iV) in Tables I, II, and III. In the tables, L

is the actual length of 0.010 inch thick septums used in 0.900

inch square waveguide. These data can be adapted to other

waveguide sizes by applying the scaling factor L“ = La/O.9

where “a” is given in inches and by maintaining a septum

thickness of 0.01 la.

Frequency has been normalized to the cutoff frequency of

the TEIO mode for the TE1o, TEH, and TMI1 sets of coeffi-
cients. The values of S11and S12computed by using (23) will

be quite accurate for frequencies in the range 1.Zl<f’ <187

for the TEI, mode. For the TE,, and TM,, modes, the

range of validity is 1.48 <fl S 1.87. The range between

&Ml, and 1.05~..~Iw,, (1.4145j” < 1.48) is not covered by the

fitted curves.

APPLICATION TO PERIODIC STRUCTURES

The basic motivation for this study was to develop a

structure capable of inhibiting the TE1o, TEu, and TM1l

modes, while remaining transparent to the TEO1 mode. Thin

septums, far apart, will help, but at certain frequencies

depending on spacing, two septums will not help at all, due
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Fig. 10. Argument of the reflection coefficient for a TMu incident
mode, for a single septum with a finite thickness.

to the cavity effect. This can be alleviated by random spacing

which will sooner or later inhibit any mode at any frequency.

Periodic spacing is probably more practical since the struc-

ture can be designed to avoid resonant cavities over a given

frequency range. This latter approach is discussed below.

With reference to Fig. 11, the transfer scattering matrix

for a typical section of the periodic structure is defined as

(24)

where in this case the subscripts refer to the reference plane.

(For several sections in tandem, the combined transfer

matrix is simply the product of that of each section.)

By Floquet’s theorem, the fields at points one period

apart differ by a constant. This constant turns out to be an

eigenvalue ~F of the transfer matriX for a three-part wave-

guide. The first and third parts are sections of uniform wave-

guide and the second is a septum section, as shown in Fig. 11.

Let b,= A#al and a,= &lbl. Then (24) leads to

1 T,, T,, - xFlkaJ = I-o-I

Let kF = exp(p+ i~), so that p is the attenuation

periodic structure in nepers per period. The two possible

eigenvakJes ~F1 and ~F2 correspond to Bloch2 waves traveling

(25)

of the

z An independent ensemble of eigenfunctions of the uniform wave-
gnide satisfying the discontinuity boundary conditions of the periodic
waveguide.
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TABLE I

FITTEDCURVECOEFFICIENTSFORTHETE1OMODE

N S1l(NI

I REAL PART IHAG, PART

SEPTUM LENGTH = .125
i -2.255698311457 -9,.99 S7.50263329

2.91096362S143 26, KSS153St 0337
: -4.057 E01397111 -28, 015.S54404206
4 S.50? 641196047 16.013 %8654 !!442

-1.358056746248 -4. SS6967987696
: .192930322867 .601539084467

SWTUU LEMG7R = .250
L -1. S47S95477002 -8.900739347707

1.’762?36207450 23,9232 Q3035337
: -1.00206679514.7 .25, s57194152868
4 1.062408114710 14, S19486809355
5 -.i74ae70z3513 -4,278157622939
6 -,001805321372 .4744409744s4

S5P7UH LENGTH . .375
t -1,076847 S78390 -6.466475229364
2 -.722904069057 14.5 L9881530322

1.$54036799195
:

-ii.304072132079
-.8ib705?4i277 3.516572456102

5 .2 S17S.250.S008 .i0954899367i
6 -.0196809203%8 -,*99499542726

SEPTUM LEN6Tti = .500
i -2.0402444 S0828 -4.097405419006

3,336’205676629 5.614650908S56
: -5.370244144041 2.001082242199
4 4.6996690339?.6 -6.356685582404
5 -1, ’772540461811 3,7390640 i24t3
6 ,S42002684927 -.725 E94E402.53

SEPTUM LENGTH = .625
-3.632395642S17

;
-2.8747123 s9277

9.527300770074 1.14399 L406970
3 -14.929652539158 0.483%68536884
4 12,03656159294s -11.008963262393
5 -4.7751 S3372476 5,307146933420
6 .774459058223 -.955092992857

sEPrLN4 LEN6TH . .750
1 -4,953052609979 -2.48772420:062
2 14.565421045218 - ,20487015S703
3 -22.563970865194 10. S35843695265

17.784 i46666053 -12.256689282621
: -6,9262550226.59 5.79641246%1411
6 1.09469042S443 -1.006369772980

SEPWH LEN6Tti = .875
1 -5,8684486 s4115
2

‘2,46 S067244340
12.0096954919.26 ..229954907459

3 -27.713859517643 -10.2724178.57845
4 21.61021350537S -12.132896799685
5 -8.339031991548 5,72090714S933
6 t.302i3237i25a -.990525777o26

SEPTUM LENGTM = 1.000
-6.421303632743 -2.57509 S958850

: 20.076262293S23 .21747147507S
3 -30.783594815820 9.564423362690
4 23, S75659452732 -ti,577043572?63
5 -9. i6978636063S 5.504004725471
6 1.4232410.22458 -.956813319437

912(NI
I

REAL PART IMAG. PART

3.079847866634
.11.268016933112

17.872130789219
-13.281277467542

4.9026846 t3601
-.704925073897

2. IS52i517775051
-7.470090661604
III .6 SS29831?224
-7 .4042.0121122.3

2.5t6926074395
-.321 S6052.3363

-1.264163520335
5.268392.498282

-2.70487913S531
7.1429.22180277

-2.922664019053
,481781636200

-2.2453335 s5786
.5.69 i39W64436

-13.997039089622
10.966099003162
-4.2 S603094ii77

.61i20734i270

-1.899846061!!68
4.i5579i23i616

-3. i76275431607
.90263559925.7
,123966739692

-.095037777962

.872236074360
-5. 0e299545i006

9.798278550568
-S.6S9440796046

3.70a 74009i207
-.630203960612

3.99481288775i
-15.369095412@2S

23.442219137723
-17.744237273946

6.679081619906
‘1.000196581246

3.423427909972
-13.252415677070

S0.011194S63S82
-15.004166691396

5.592210225766
-,822602365321

1

1
2
3
4
5
6

1
2
3
4
5
6

1

:
4
5
6

1
2
3
4

:

1

:
4
5
6

1
2
3
4
5
6

1
z
3
4
5
6

II

1
2
3

:
6

1
2

:
9
6

i
s

:
5
6

:
.7
4
5
6

1
a
3
4
$
6

1
2
3

:
6

1
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a
4
Y
6
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2
s
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s
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TABLE II

FImED CURVECOEFFICIENTSFORTHE TEu MODE

SllfN! I S121NI
I

REhL PART IHAG. PART I REAL PART lMAG. PhR1

SEPTUM LENGTH . .125 I
-1.988226 S0S396 -19 S .924636750601

.5523 S7399611 426.6680614760.54
-.995444572474 -470,850905132ZS3
1.507906190705 224,9.$2545623232
-.63? S45191291 -52.7JS0’29441479

.085241327594 4.815250140726
SEPTUM LENGTH = .250

.1.7061 OO154697 -176.163596411606
-.067835868296 432,272566193751
1.251610790275 -419.426611018032

-1,2 S5477947627 200.919145 SS8006
.6.57674200307 -46.795168441003

-.103S9S56S552 4.211755313024
SEPTUM LENGTH . .S75

-1.334977151826 -171,980 S6499739S
-,457310007979 419.804695535976

.72026337675S -404,052332242099
-.20301465e990 190.59 S0006491S8
-,00 S866318492 -4 S ,520419126307

.026666574577 3.7?s151144095
SEPWH LENGTU = ,500

-1. L64002432851 -176 .0 S5745652412
.53459 s307072 419.990640961544

-2.459148931549 -39 S.52610915360S
3. Qs2996926491 186.7258 S9415369

-1.4247ZS55802U -42.191S19909130

SEP,U” LEWT”. .62:,; ::;;::::
.255742915332

-1.24413s477759
1.9528 S6920434 414.S61S2S995205

-5.6049S2236981 -396.956014659527
5,9499 S2251746 125.69079899S601

-2,613864313589 -41.063265810480
.438220133404 3.561 *496i3245

SEPWn LENGTH . ,750
-1.311066194351 -170 .3 S1556727651

2.890462298066 414.40232 E946a17
-7.752425387923 -396,555219173a2.f

7.70 S059778456 1s5.535764251520
-?. $5308492S63S -41, S49129012844

.950266663593 v.5646933787P6
sEplw LENGTH . .5.75

-1.34 ?2952146307 -i7fl.416S09062b02
3.426 i615S401i 414.61 S504755926

.8.9i2il108450652 -396.96 .37S4177107
S.2.33501S69S32 10!!. SS0480456226

-3.772004122143 -41. 9257914 s6949
.613519470031 2.585559630298

SEPTUM LENGTH . 1.000 S
-1.404 s60041804 -170.445869662762

3.823 S161S8071 414, s00100619s6s
-9.7004610 S4742 -397,.70240992S0S8
9.47?2.505s0660 1S6.16163643600S

-4.0 S21298S 7096 -42.095316155409
,656 Stle5V020 3.60193707S819

I

TABLE III

FITTEDCURVECOEFFICIENTSFORTHETMIIMODE

SlllNl I S121N)

HEAL PART lMAG. P4RT REAL PART IMA1.. PART

DEA FIT.
49.368 S99175649
08.429368t6Zlt2
74.1060 s4508111
i7.27902s029S97

1.4794 S6025045
-.26 W45289849

23, S45279641416
45.2262.668 S7101
26.31 t757747971

1,06415 S866971
3.4456790005S7
-.78 S296164592

-6,906360232001
6.59120467752S
7.4211 M401997

w.4.74t4000400b
5.7*83 S77S5797
-,s877016SS0S0

1.1-886-296909
.ll.64b5222502b6
22.741 SS257543?

,1 S.14237S 404352
6.5645247024S5
-.s94770266i31

4.4b43569265Sb
.18.4413057135s0
2?.440s051S0262

.19.1491 S95532EI
6, Z97i52463441
-,2275890 S5729

S2.9S1769057b2J
-1 S.0S5186 $00541
-56.214139109706

70.492311223466
-29.65’24’24639803

4.3211 U174511659

-9. 0130 s4622478
79.3434227073S8

-146.587733692467
112.618177172247
-39.549&i5.9156S9

5.2606 S6539349

-26.649063937493
109. +JO833871566

-160.392495.268472
11O.CI7S5%3939879
-36.196731162581

4.614452077624

-30.156323751107
10S.1%782821656S

-147.044755175193
96.389564818SS2

-30.733772909734
3,832730230320

-2.2021 S5354446
8.267428096602

-11. 04 SJ40209464
6.871673916131

-2,025725063460
.2266s1034149

5.40720+371551
.19 .503723539077
26.0029 S1360505

-17, 76757986615S
5.727S96330S76
-.72i9W 411241

-.666741076657
1.72708455S306

-%.514 S707320S2
.4540 S6071113
. 0S2694074421

-.02 S119287490

-. Si97S7S54364
-.47 S0S4S 06344
1.261666200207
-.564573263517

.204458 S56962
-.0439’’6 176760

..3 S71446S1426
-1.60662 SS23010

4.768733664i57
-4.654474121894

2.021029265995
-,3 L7?6Q496773

.252652530562
-2.6311 S17S9604

5.1798.$2584699
-4.2 SSS5+ 417443

1.625789721723
-.223425151233

.422426906526
-1.477715795359

1.747792745074
-.0 S282+ ’231626

.i55b30001914

. 0101.229 i03bl

.337691554445

.082359563639
-1.7042749 s9850

Z .1764722 t64t5
-1.074511502923

,i938W52i48b

.050189501630
1.9205 WZ.3K500

.5.057349 S97366
4 .85 S741S297S9

-2.064706090264
.329650232909

-.843867743054
2.1760064’202s6

-5. S94291566307
4 .9309 S0292633

-2.0 S31S796S.793
.321955200023

‘120.439b230376flU
Z92. W4!-3115417*

‘281 .119257027” S1
132. SS5S4635793U
-30. 72ei37395 /44

2.145526923S19

.50.177 s915477.7~
122.474 S3199553S

-117.751 U9451659U
55. W21053OWJ3I

-12.522 J7761150J
1.85264$118547

-22. 42952270810g
52.764 Z5S91OW4

-47,492337 S9227,
19.745496542/04
-3,433 S717SS203

.122 S65S30144

-10. 014/79877S74
21.511139090654

-16, 0740 S90426S5
4.000 S0277486,!

,4694 .S1556S00
-.255654 S10416

-4, s73?1579 .2326
7.750596777513

-2.9424843 S8S44
-2. C127U67964098

1.755004840046
-.349 U32127441

-1. S25719920205
1.96017 S31903S
1,90.547127603)

-3.7473929220W
1.912 U77S52b2&
-, J2518742.7z7S

-.2.93 s4737s59i
-.272122141661
3. Z21J77642Wd

-3.710492 S2i40~
1.657222SS6531
-.2642. S7274t4d

-.20.2472073581
-,961 S3052329;
3.i36tZ190P.251

-3.09992 S82S44!
1.3029 ?760’20S.
-.201 .25920S16;
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Fig. 11. Transmission system, with septums at periodic intervals.

in the + or —z directions. In the stopbands *= O and

pl = –p,. In view of the definition of XF, the correct choice

of kFi for a wave traveling away from a source, in the posi-

tive z direction, is for p> O, or I kF, I >1.0.

In the passbands, p= O, and the correct eigenvalue is

chosen in a different way. Note that the ratio of the com-

ponents of the eigenvectors is bJal = r, the reflection coeffi-

cient seen by a uniform waveguide looking into a periodic

waveguide. The correct ~i7%is the one for which I 1?I <1.0.

Using well-known relations [11 ] between the scattering

matrix and the scattering transfer matrix, the following can

be derived:

(26)

where B= Re[exp(alD)/S19], D is the inter-septum spacing,

and Slz is for the septum section alone. In the stopbands:

Attenuation per section = 20 Ioglo \ AI’+ I

\rl =l.O (27)

In the passbands:

exp (alD) — hF~~12
r=

811

(28)

where ~F~ is chosen to make I 17I <1.0, the reference plane

is midwa~ between septums, and S11 and Slz are for the

septum section alone, as in the first part of this paper.

It has been assumed that all structures are lossless. Small

discontinuities are analogous to ideal transformers which

connect a main transmission line (TEO1 mode) to undesired

transmission lines (TE1O, TEH, and TMu modes). When

these latter modes are operating in a stopband, the trans-

formers see an infinite VSWR and no energy is coupled

from the main line. Instead, the secondary sees a reactive

load with fields decaying at a rate of “p” nepers per period.

It follows that the reactive fields generated by each discon-

tinuity are insignificant more than two sections away when

the structure is designed for “p” in excess of 10 dB/period.

The design engineer must select an operating frequency

and estimate how much isolation is required by the ac-

curacy of his manufacturing process. From this, a septum

length is selected. This is aided by noting from (26) that the

isolation per period will vary from O dB to slightly less

than 6 dB in excess of the insertion loss of an isolated sep-

tum. Using (23) and Tables I, II, and III, a simple computer

routine can be written to enable the selection of the septum

spacing. Since al is different for the TE1O and the TEH and

TMII modes, a compromise spacing may have to be used to

inhibit all three modes equally well. Even so, the spacing is

not unique, but is determined as a trade-off between band-

width and attenuation. Wide septum spacing minimizes at-

tenuation and narrow spacing maximizes the width of the

stopband.

The contour chart of Fig. 12 is quite useful as a design aid.

Ten decibel contour lines are shown for the TE1o, TEu, and

TMII modes. The closely spaced pairs of curves border

bandpass regions for which the modes are attenuated less

than 10 dB/period. The diamond shaped areas represent

acceptable ranges of spacings and frequency for which all

three modes are attenuated more than 10 dB/period. The

latter are designated as suppression areas.

The stop bandwidth for a particular septum spacing is

the horizontal width of the suppression areas, illustrated by

the arrows in the upper right corner.

The design problem simply consists of projecting upward

from the desired operating frequency to the largest spacing

for which the suppression area is centered and the bandwidth

is acceptable.

Figure 12 was generated for use at ~-band frequencies

and is based on a septum length of 0.500 inch (0.555a) in

a 0.900 inch (2.286 cm) square waveguide. The region indi-

cated by the lower set of arrows represents a 300 MHz band-

width centered at 11.38 GHz, with a spacing of 4.45 inches

(11.3 cm). The attenuation is 67 percent of that of a con-

ventional waveguide.

When the septum length is varied, the sizes of the suppres-

sion areas vary, but the general shape of the curves does not

change. For shorter septums, the suppression areas decrease.

This is illustrated by the five areas in the lower center which

correspond to a septum length of 0.277a. For longer sep-

tums, the suppression areas expand until their borders al-

most coalesce for lengths greater than the waveguide width.

The peak attenuation per period, in the suppression re-

gions is much less for shorter septums. For L/a= 1.11, this

can be as high as 44 dB/period; for L/a= 0.555 it falls to

25 dB and for L/a= 0.277 itfalls to 15 dB. As a consequence,

septums for which L/a exceed 0.55 are preferable because

tuning adjustments are not essential to good performance.

The shaded area in Fig. 12 represents the range between

cutoff of the TEII and TMII modes and the lower limit of

usefulness of the fitted curves obtained by using (23). It is

recommended that this region be avoided.

RELATED PROBLEMS

The analysis presented in this paper may be adapted to

other symmetrical waveguide structures. The same basic ap-

proach may be used, but with a new T-matrix suitable for

the region between the input part and the center of the

structure. It would be necessary to show that incident TE

modes do not induce TM modes, or the converse, or else

to produce a new proof that there are no eigenvalues of the
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Fig. 12. Decibel contour chart for the TE,o mode (—)>
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resulting Fredholm matrix equations that are equal to one,

Only the problem of a square waveguide with a single

centered septum has been considered. An interesting prob-

lem is posed when the septum is moved off-center so that

b/a k no longer 0.5. The second and third line of (3)

represent a doubly infinite countable set of equations. They

can be reduced to one set by intermixing the equations

from each set. In this context, the convergence of the solu-

tions depends on the ratio of equations used from each set.

Mittra [12] has shown that for the semi-infinite septum, the

correct ratio is b/c, the ratio of the apertures. This suggests

that this is the ratio to’ be used for the finite length septum

but it would be an interesting problem to prove this.

Another logical step would be to consider a tall waveguide

with P parallel septums. Such a configuration would in-

crease (3) from three semi-infinite sets of equations to P plus

two sets. Igarashi [13] has considered the problem of the

fields scattered from uniformly spaced semi-infinite septums.

His Wiener-Hopf analysis should at least allow one to ob-

tain the coefficients of the various scattering matrices. The

principal question would be the method of truncating or

intermixing the sets of equations to obtain the correct solu-

tion.

CONCLUSIONS

The analysis presented in this paper was motivated by a

desire to produce a structure capable of inhibiting three of

four possible propagating modes by using periodically

spaced septums. A new approach to solving the isolated-

septum problem has been presented, with fitted curve

coefficients tabulated for use over the frequency range of

interest. Using these coefficients and/or Fig. 12, it is a rela-

tively simple matter to obtain the parameters of the desired

structure.

The TEIO mode analysis is not limited to the square wave-

guide problem, but is also applicable to rectangular wave-

guides containing centered H-plane septums of arbitrary

length.
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