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Solution of the Finite Length Septum Problem with
Application to Periodic Mode Suppressors

SIDNEY B. FRANKLIN, MEMBER, IEEE

Abstract—A square waveguide with periodic septums is considered
with a view towards determining the parameters of a structure which sup-
presses three of four possible propagating modes. The analysis is presented
in two parts, the first of which is concerned with the isolated septum.
Using available techniques, semi-infinite scattering matrices are deter-
mined for the semi-infinite septum for arbitrary TEy,, TEy:, and TMy;
incident modes. These are used to derive Fredholm matrix equations
which yield the field everywhere near the finite length septum. The leading
terms of the inverted equations are the far-field transmission and reflec-
tion coefficients. The solutions are evaluated for several frequencies, and
fifth degree polynomials are fitted for the computation of S;; and S;..
The analysis for the TE;, mode is applicable to an arbitrary height wave-
guide and may be used without modification for the *‘finite length’’ sep-
tum in conventional waveguide.

The second part is concerned with the periodic waveguide and assumes
that the septums are far apart. A contour chart is introduced to visualize
the performance of the periodic structure. The chart is especially useful
when more than one propagating mode is involved and simplifies the design
problem so that the parameters of practical structures may be obtained
with little effort.

INTRODUCTION

N RECENT YEARS there has been a considerable
I[ effort [1]-[4] to develop waveguides for use in the

higher microwave frequency range, which are capable
of transmitting large amounts of power with low attenuation.
Since power capacity is proportional to cross-sectional area,
this usually leads to large waveguides with multimode ca-
pability, or to open waveguides. For many applications, such
as airborne radar, open structures are not feasible. Con-
versely, oversize waveguides inevitably have imperfections
which induce unwanted modes.

Paralleling waveguides can increase power capacity, but
with no reduction in attenuation. If the parallel waveguides
are arranged to have common walls, with opposite current
flow on each side, I?R losses may be reduced by eliminating
the common wall. For two rectangular waveguides in
parallel, the result is a square waveguide; many such rec-
tangular waveguides in parallel produce a tall waveguide.
Completely eliminating the common walls creates structures
which are again capable of multimode propagation. Thus
partial elimination is called for, leading to a structure with
septums at periodic intervals.

The attenuation of a rectangular waveguide is 45 to 61
percent greater than that of a square waveguide with no
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septums. Thus, for certain applications, square waveguide
with short, widely spaced septums may be justified, and will
be considered here.

Rectangular waveguides are normally operated in the TE,,
mode between 1.24 and 1.87 f,,. When the guide is enlarged
to a square shape, three additional modes are possible: the
TEo; mode over the same band as the TE;, mode, and the
TE; and TMy; modes whose cutoff frequency is 1.414 that
of the TE;, mode. Here it is assumed that the TE,; mode is
the desired propagating mode and that the TE,,, TEy;, and
TMy; modes are to be rejected. This permits the analysis
for the TE;, mode to apply directly to the H-plane finite-
length septum problem in conventional rectangular wave-
guide.

Thin septums in the y-z plane are transparent to the TE,
mode and no further analysis for this mode is required. The
reduction of attenuation is equal to the difference in attenua-
tion of square and rectangular waveguide times the factor,
D/L'=1—(L/L’), where D is the distance between septums,
L is the septum length, and L’ is the period of the structure.

The design engineer’s main concern is to choose the short-
est possible septum length and the largest spacings which,
at the same time, have a maximum inhibiting effect on the
undesired modes. The analysis for these modes can be re-
duced to determining the scattering parameters of isolated
septums for subsequent determination of the stopbands of
the periodic structure.

THE SCATTERING MATRIX APPROACH

Consider a geometrically symmetrical 2N-port with even
or odd excitation. The field scattered from one port is the
same as if the structure is bisected with a magnetic or
electric wall, and excited from one side only. It has been
shown [5] that the scattering matrix of the 2N-port is re-
ducible to combinations of the reflection matrices obtained
from the bisected structure. Let @ be an N-vector represent-
ing the amplitude of the modes incident on the bisected
structure, b an N-vector representing the amplitude of the
reflected modes. Then:

b = Ped (1)

where T'c is the reflection matrix and the subscripts indicate
even or odd excitation (magnetic or electric walls for TE
modes).

For the symmetric 2N-port of Fig. 1
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Fig. 1. A symmetric 2N-port.

where
S = S = 5(Te + To)
S12 = 821 = %(Fe — I‘O)

In three excellent reports, Pace and Mittra [6]-[8] intro-
duced the Generalized Scattering Matrix which includes the
evanescent modes as well as the propagating modes. Assum-
ing generalized scattering matrices, (1) becomes an infinite
set of equations, where the first N-components of @ and &
are the amplitudes of the propagating modes and the re-
maining terms represent the amplitude of the evanescent
modes.

Tt follows from (2) that for N=1, the far-field reflection
and transmission coefficients, (I' and 7) are 3(Tey+T011)
and %(Tey—Toyy), respectively. Thus, by considering the
problem of the bisected structure, it is possible to determine
the fields everywhere, as well as T and 7.

THE BISECTED STRUCTURE

Consider the bisected septum of Fig. 2, with z=0 located
at the leading edge of the septum. The vectors ¢ and b are
related by the partitioned matrix:

ba Saa Sas SacT|[da
bg{=|8ssa Sz Ssc||ds|. (3)
be Sca Ses Scedlac

The clements of the submatrices, S, are obtained by
considering the semi-infinite septum problem, and will be
discussed in a later section.

From Fig. 2
ap = TgTBbB
¢ = 7‘ch50 “)
where
e—’YBlL
o |
e—‘YBzL

TB = ¢ YBsL (5)
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Fig. 2. The bisected structure, with a magnetic or an electric wall.

and r,=+1, r,= —1. T¢ is similar to T, and is equal to it
when the septum is centered. Then (3) becomes:

ba Ssa Sas SacT[Ga
by | =|Ssa Szz Sscl|r Tsbs | 6)
be Scsa Scs Scellr Te be

The present analysis will restrict the problem to centered
septums and to incident modes affected by the septum.
The latter condition permits @4 and b4 to be restricted to
modes having transverse E-fields which are symmetrical in x
about the septum. With this restriction, vz,=vc,=8:;
Te=Te=T and bz and b¢ are related by bp=1Ibc, where II
is a diagonal matrix. 71 is the identity matrix, or the identity
matrix with the even diagonal terms negative, depending on
the choice of the x=0 position. In either event, II"'=1I.
With this understanding, the second equation of (6) becomes:

bs = Spads + r(Sze + Spcll) Ths (7)

where use has been made of the fact that both 7" and IT are
diagonal and commute. This is a Fredholm matrix equation,
and can be solved for by if none of its eigenvalues are equal
to one. This was shown to be true by Pace and Mittra.
Then

bg = [I — r(Szs + SpclI)T]*Spada &)
and
ba = Saadis

+7‘(SAB + SAcII>T[I — T(SBB -+ Sgcll)T]_lsBAdA. (9)

THE UNBISECTED STRUCTURE
If a4 is replaced by I, it is necessary to replace b4 by T’ or
T,, depending on r, or 7. Combining this with (8) and (9),
the results for the complete septum without the bisecting
wall are:

Sit = Sua + 3(Sap + SaclDT

4 [F = s SBCIDT]_I} Soa (108)
—[I + (Sse + SpcI)T]
Sis = 3(Sar + SaclDT
_ —1
. { [T — (See + SzcID)T] } Sor. (10b)
—I—-[I —+ (SBB + SBcII)T]_l
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The field in the septum region is the sum of the fields ob-
tained from the solution of the even and odd excitation prob-
lem, or from (8)

EB unbisected = %{ [I - (SBB + SBC’II) T]—l

septum

+ [I + (Szs + SBcII)T]_l}SBAdA (11a)

05| unbisected = %‘T{ [I - (SBB + SBCII)T]_I

septum

— I 4+ 885 + SpcID)T]*}Spada. (11D)

THE MATRIX ELEMENTS

Let the vectors d4, @s, or d¢ be restricted so that two are
null vectors and the third g, is the unit vector corresponding
to zero for all but the Jth element, which is 1.0. From (3),
the vectors b4, bz, and b¢ are each column vectors of the
submatrices S4,, Sz, and S¢,. Then, to obtain the matrix
elements, it is only necessary to assume a single mode inci-
dent on the edge of the semi-infinite septum from one of the
three regions. The amplitudes of the modes scattered in the
three regions become the elements of one column of three of
the submatrices of (3). The remaining six matrices are deter-
mined by changing » from A to B to C.

a) The TEy, Fields and Matrix Elements: This problem
has been discussed by Hurd and Gruenberg [9] for the TEx,
modes only, assuming the simultaneous incidence of the
lowest-order mode in each of the three regions, and a sep-
tum location such that b/a is irrational. It is a relatively sim-
ple matter to generalize their results for any incident mode,
and to allow for the degeneracy which results when b/a=1.

Let the transverse E-fields be expanded in a Fourier series
with respect to Fig. 3 and the following modal coordinate

sets:
{m,m = gsin ((Zn — 1 ’—;f)}n

. nmx
{% = Jsin T}

nw(x — b)
b } !

n

{¢Chn = §sin 12)

Then the incident and reflected transverse E-fields in Region
A are

0

Eincidensa = 3 04,543, " 4,7 (13a)
n=1
Eretlected 4 = Z bAn¢Ahne+7Ahﬂz (13b)
n=1
where
\2 1/2
Yag, = @ = [((271 - 1) ;) — koz] . (14a)
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Fig. 3. The semi-infinite septum.,

There are similar equations for regions B and C, providing

nw \? 1/2
YBin = YCiw = Bu = [(T) - ko{' . (14b)

Note that the coefficients from (13a) and (13b) are the
elements of the semi-infinite vectors a, and 5,. For this
choice of geometric coordinate system, the matrix I be-
comes

I = (—1)+15;.
The elements of the matrices of (10) are:

7 —
Saur = (_1)I+JM F,

Th(—a,r, “‘O(J)

Brb?ri(ot, Br)
% Sus + SaclDyy = (— 1y TR0 P g
 Ban + SaolDr = (1) wIh(Br, B)

18sh(—Br, B)
S + Spcl Dy = (— 1)+ 20T PL P
(See + SpclD)is = (—1) T8, ) Fs
wIh(—Br1, —ay)

31b27h(—01J, “OlJ)

Spary = (—1)F+H+ Fy (15)

where:

7§, Bn b
1) b n) = — P —exp[—%sln;] (16)

(& — n7(E, an)
2) ri(&, m) is the residue of A(£, 5) at the pole £

) b b
3) w(&, 8) = I (Bn — § — exp [i] an
n=1 nmw nm
4) w(t, ) = g (an — &) m
oot
P an = 1)7r]' (18)

5) Fy, F,, F;, and F, are factors which will be used to
relate the TE problem to the TM problem. Here they
are equal to one.

b) The TEy: Problem: The TEy; solution is formally iden-
tical to the TEyo solution if the modal coordinates are
chosen as follows:
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{ 1 @n — Drx  wy
b4, = — cos sin — &

2n—1 a a

o @n — Dz by
+ sin ﬁ) cos _y ﬁ}
a n
{ 1 nrr | owy
= — — cos — sin —
o 2n b a *

. nwx TY
- sin —b— cos — 4§

aQ

(19)

and if k¢ in «, and B, is replaced by k2—(x/a).

©) The TMy, Fields and Matrix Elements: The approach
of Hurd and Gruenberg may also be used for the field
analysis of the TMy; mode problem, but it is not quite as
straightforward because the transverse fields have two com-
ponents instead of one as in the TEy, problem. The main
effect of the additional field component is in the determina-
tion of two constants in their “function-theoretic” ap-
proach. For the TEy, problem, the “edge condition” [10]
allows one constant to be zero. For the TMy; problem, this
is not the case and a series expansion for E, can be shown
to be uniformly convergent in the aperture and at the end
points. This expansion converges to E, at all points in the
aperture and must also converge to E, at the end points.
Thus, the additional equation is obtained by equating this
expansion to zero at the septum edge.

Let the transverse H-fields be expanded in a Fourier
series with respect to the following modal coordinate sets:

x Y

1 _ x A
v Rl GOy LU
+(@2n—1) cos ((Qn— 1) E) sin i ﬁ:|}
a a N

{ 1 [ . onwx Y
¢B =—— —8in — COS——'@

N 1+4n? b a

nEr | wyY
+2n cos —— sin — y]}
b a n

{ 1 [: . na(r—>b) Y

¢ =——=—————| —8ln ———— CO8 — &

&/ 144n? a

+2n cos Tr—(xb;Q sin 4 ﬁjl} . (20)

a

In (132) and (13b) replace E by H and in (14) replace
ke by k¢*—(w/a). Then the vectors ¢ and b represent the
amplitude of the transverse H-modes instead of the trans-
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verse E-modes. The elements of the matrices of (10) are
given by (15) and the factors F; take the following form:

€1
1 — (-
F‘4/1+<2J-—1)2 T
TV iy er-ye o
— - (—a)
0

€1

R Qi
F_1/ [T 47 or (A)
YV iy er—e

€1
1—81— ()
€0

€1
1+ 8;,— (8y)
€0

1+ 472
F3=/‘/+
14 472

€1
1+ 8— (6
€p

€1
— 1 —8r— (—a)
14+ @J —1)2
pom g/~ 0 “ (21)
1+ 4712 €1
— oyg— (——aJ)
€0
where
@ " koLhGikon) — h(—ike n)
and

i =+/—1. (22)

Inverting the Operator Equation

The solution of (7) necessitates the inversion of a semi-
infinite matrix operator of the form A+ (See+SpcIDT,
where A=1.0. One approach is to expand this in a Neumann
series, which is permissible if ])\ni < 1.0 for all eigenvalues,
M\.. This leads to the kind of series usually associated with
multiple reflections between discontinuities, as in a plane
wave passing through a dielectric slab. Indeed, Pace [6]
bases his work on a multiple reflection approach, then proves
convergence by proving that all | M) <1.0.

It is inevitable that the matrices in the Neumann series
must be truncated. It becomes just as practical to truncate
the operator (Spz+Sscll)T directly, at say J-terms. This
has the effect of assuming that only the first J-modes have
any significant effect beyond the immediate vicinity of the
edge of the septum. Indeed, if the septum is quite long, only
the lowest mode is present at the trailing edge of the septum.
More terms become significant as the septum becomes
shorter, or frequency increases toward the cutoff frequency
of the small waveguides in the septum region.

It is reasonable to use the mode decay rate as an indica-
tor of how many terms to include in the truncated matrix.
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Fig. 4. A septum in a single mount.

This approach was used, with the matrix order J being
chosen when exp(—@6,L)=0.5X 107, but with J never less
than two. This rule of thumb proved to be quite practical,
since increasing the size of the matrix affected only the
fifth significant decimal place of the reflection and trans-
mission coefficient.

It would appear that truncating the matrix would yield
inexact solutions. This is not precisely true, because (barring
computer round-off errors) a solution is obtainable to any
desired degree of accuracy by successively increasing the
size of the truncated matrix and taking the limit of the se-
quence generated.

Single Septum Results

a) TEi, Incident Mode: For experimental work at X-band,
a 0.900 inch (2.286 cm) square waveguide was chosen, with
septums made from 0.010 inch (0.0254 cm) copper stock, in
lengths ranging from % inch to 1 inch in % inch (0.3175 cm)
increments. A simple split waveguide was used as a septum
holder, as shown in Fig. 4. The reflection and transmission
coefficients were verified by measuring the argument of Sy,
and the absolute value of Sy, since: 1) | Su|?+]| Sie|2=1.0
and 2) Arg Sy = Arg S12+90° for all symmetrical structures.

Figure 5 shows the measured and calculated insertion loss
for several frequencies. The curves marked “thin septum”
were computed from the equations given and do not agree
with the measured data. This disagreement was traced to the
finite thickness of the septum, which altered the values of
{v5,} used in the T-matrix of (5). The curves marked “thick
septum” were computed by modifying the 7T-matrix to
allow for the septum thickness, but still assuming an in-
finitely thin septum for determining the elements of the
scattering matrices.

A further small deviation was noted for the shorter sep-
tums. This was a secondary effect and was traced to the
septum edges, which were blunt. Three septums were
tapered at a 5° angle, yielding insertion losses that were al-
most exactly as calculated.
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Figure 6 shows the computed and measured values of
Arg S at the same frequencies as previously mentioned.!
There is a fairly good agreement, with almost all of the dis-
crepancies attributable to the blunt septum edge.

b) TE,: Incident Mode: The calculated results for the
insertion loss and the argument of the reflection coefficient
for the TE;; mode are presented in Figs. 7 and 8.

¢) TMy, Incident Mode: Figures 9 and 10 show the same
data for the TMy; mode, but presented in slightly different
form. Note that for a constant frequency, increasing the
septum length always increases the insertion loss. However,
for very short septums of fixed length, increasing the fre-
quency does not always reduce the insertion loss.

The frequency range of interest is above the cutoff fre-
quency f., ai of the main waveguide, and below that of
the smaller guides in the septum region f.,, B1. Near fi., e,
the insertion loss of the septum is quite high, and approaches
infinity. Close examination of the elements in the first col-
umn of Sgs indicates that they are all proportional to ;.
Thus, as «; approaches zero at cutoff, the insertion loss
increases. Since Sp4 is the transmission matrix at the leading
edge of the septum, low-frequency attenuation is increased
by the field behavior at this edge, as well as the attenuation
in the septum region itself.

The increase of insertion loss at the high end of the band
is partially due to a similar phenomenon at the trailing edge
of the septum. One would expect the insertion loss to de-
crease as the frequency increases toward the cutoff frequency
of the lowest-order mode in the septum region. Offsetting
this is the fact that for very small values of 8,, the leading
term of (Spa-+Sacll) decreases faster than exp(—pg;L) in-
creases. This is comparable to less transmission of energy,
via this mode, past the trailing edge of the septum. For short
septums, several modes in the septum region contribute to
the total energy transport. Near midband, the lowest-order
mode carries a significant proportion of the total. As fre-
quency increases, this mode becomes less important as more
of it is reflected at the trailing edge of the septum. Finally,
the second mode becomes the dominant contributor to
energy transport. But this mode traverses the septum region
as exp(—B.L), which is attenuated much more than the first
mode. Consequently, the total insertion loss increases again.

Fitted Curves

It is not a simple matter to evaluate the formula for the
elements of the various matrices. The equations are quite
involved and require considerable computer time. For
facility of design, fifth degree polynomials have been fitted
to the data computed for several frequencies. Once a design
engineer chooses a septum length, (23) can be used to com-
pute Sii.

1 The abscissa of Figs. 6, 8, 9, and 10 is normalized with respect to
the guide wavelength A, of the corresponding lowest-order TE or TM
mode in region A. This normalization was introduced to separate
curves which would otherwise cross one another and be difficult to
interpret.
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6
Su(f) = 22 S (23)
N=1
where

fl = f/fco = kO/ko”

and the S11(X) are presented in Tables I, II, and III for the
TE 10, TE11, and TMy; modes. A similar equation is valid for
Si2, using the S12(N) in Tables I, II, and III. In the tables, L
is the actual length of 0.010 inch thick septums used in 0.900
inch square waveguide. These data can be adapted to other
waveguide sizes by applying the scaling factor L =La/0.9
where “a” is given in inches and by maintaining a septum
thickness of 0.011a.

Frequency has been normalized to the cutoff frequency of
the TE,, mode for the TEio, TE.;, and TMy, sets of coeffi-
cients. The values of Si; and .S computed by using (23) will
be quite accurate for frequencies in the range 1.24<f"<1.87
for the TE;, mode. For the TE;; and TMi; modes, the
range of validity is 1.48<f’<1.87. The range between
freomaty, and 1.05 fromary, (1.414<f7 < 1.48) is not covered by the
fitted curves.

APPLICATION TO PERIODIC STRUCTURES

The basic motivation for this study was to develop a
structure capable of inhibiting the TEi, TEj, and TMy
modes, while remaining transparent to the TEq; mode. Thin
septums, far apart, will help, but at certain frequencies
depending on spacing, two septums will not help at all, due
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to the cavity effect. This can be alleviated by random spacing
which will sooner or later inhibit any mode at any frequency.
Periodic spacing is probably more practical since the struc-
ture can be designed to avoid resonant cavities over a given
frequency range. This latter approach is discussed below.
With reference to Fig. 11, the transfer scattering matrix
for a typical section of the periodic structure is defined as

[h:l _ l:Tn T14i| [04]
231 Ty T ba
where in this case the subscripts refer to the reference plane.
(For several sections in tandem, the combined transfer
matrix is simply the product of that of each section.)

By Floquet’s theorem, the fields at points one period
apart differ by a constant. This constant turns out to be an
eigenvalue A\ of the transfer matrix for a three-part wave-
guide. The first and third parts are sections of uniform wave-

guide and the second is a septum section, as shown in Fig. 11.
Let by=Ar'a; and a,=Np'h1. Then (24) leads to

P
T T — Ar a, 0 '

Let Ar=exp(p+i), so that p is the attenuation of the
periodic structure in nepers per period. The two possible
eigenvalues \r, and Ay, correspond to Bloch? waves traveling

(24)

(25)

2 An independent ensemble of eigenfunctions of the uniform wave-
guide satisfying the discontinuity boundary conditions of the periodic
waveguide.
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TABLE 1 TABLE II
Fir1ED CURVE COEFFICIENTS FOR THE TE;; MODE Firtep CURVE COEFFICIENTS FOR THE TE;; MODE
N S13(NY S12(M) [ S11(N) $12¢8)
REAL PART IMAG, PART REAL PART IMAG, PART REAL PART IMAG. PART REAL PART IMAG. PART
SEPTUM LENGTH = 125 SEPTUN LENGTH x  .125
1 -2,255698314457 -9.893780263329 305770453690 -4,483998961048 1| ~1.988226808306"  -198.9246367506 - 3 -
2 2.970963623143 26,333183810337 -2.733453175524 10.414433201888 2 4552327399611 455:553051432031 Ji%’.’ieiﬁiliﬁ 25333333221293
3 -4,057801397111 ~28,015854404206 4,457567605160 =7,960692398903 3 =0995444572478  -470.850905132283 1.261666200207  -281.119257027v24
4 +507641196047 16,013866545442 -2,890890599573 81643812332 4 1.507986190705 2244952545623232 ~1564573263517 132.885846357930
: .1.!32056746245 ~4,836967987896 1,021422331634 27334274209 s -.837345191251 ~52.758029441479 4204458856962 304726137395 /44
sE"G: L;:ggﬁagw 250 .601539084467 -,460034219879 -.003088023244 6 SEPTc:ezE;uznu 4,815250140726 - 043926176760 2.745926923819
. GTH = .250
1 «1,847895477002 ~8,900739347707 1.936233843491 -1,859846081568 1| -1.706100154697 ~176.1635964 6 - 4 -
2 1.762736207450 23,923203035337 -8,1850847215456 4055791231616 2 -:nsnagaaazoo 432.2725661%;;21 - .333%333;‘;333 132:1;133133;;%
3 -1.802066795143 =25,857194152868 12.970228941067 -3.176275431807 3 1.251610790875  ~419,426611018¢32 4.768733664157  ~117.7518945165%0
4 1.062488114710 14,819486889355 =10.060528390276 2902635599253 ol -1.285477947627 200.519145838006 -4.654474121894 55.381053089531
5 -.174827023513 ~4.,278487622939 3.952178869099 1123966739852 s 1637674200307  =48.795168441003 2.021029265995 -12.522577631587
6 SEP;G:ntggg$:1;j7g a7 +474440974484 -, 612051521324 -.095037777962 L] SEP-GME::BM!SSZ 4.211755313024 =4317760496773 1.052641118547
. TUM LENGTH = .375
1 =1,076847878390 ~6,466475229364 3.079847866634 872236074360 1 -1,334977151886  ~171.960364997398 25265253/ - P
2 -4 722904069857 14.,519681530322 ~11.868016933112 -5:0029954;1086 2 -~ 457310007979 419.884695535976 -2.235155353335 §§Z9i§3§§123§:§
3 1.354036799195 ~11.304072132079 17,872130789219 9,798278550568 3 «720263376758  <404.052332242099 5.179852584699 ~47.49233789227¢
M - 816705741277 3.516572456102 »13,281177467542 ~8,639440796046 4 ~¢203014658990 190.598000649188 -4,288854417443 19.745496542/0¢
5 281788588008 +109548993671 4.902684613601 3.703740891287 5 «+008866318492 ©43,520419126307 1.625789721723 ~3,433971788208
[ SEP;G:112:3:§0313 500 =:199499542726 -, 704925073897 -.630203960612 [ sk .:2:::6574577 3.778151144095 -.223425151233 +122865830149
= . PTY GTH = .500
1 ~2.040244420828 ~4,097405419006 2.0528777756851 3.127270234168 1] -1.164002432851 -170.885745652412 428426906526 ~10.014/79877874
2 336205676629 5.614650988356 =7.470898661604 *12.906463165672 2 +534558307078 41%.990640981544 ~1,477715795359 21.511139090653
3 -5.370244144041 2,001032248199 10.628298317224 20,790383658095 3| ~2.459148931549 -398.526109153608 1.747792745074 -164074069042685
4 4.699669033936 -6.356685532404 =7.404381211283 ~16,.458682367920 4 3.032996926491 186.725389415369 ~.888864231626 4.00080277486¢
5 =1.,972540461811 3.739864012413 2.516926074395 6,471464420454 s =1.424728558084 ~42,191819909130 2155630801914 1469481556800
s ssnaﬁ‘ﬁéﬁé‘;ﬂ‘”’ o25 ~1 725894040853 ~.321160583363 =1.034524483836 6 “”63‘532;2915332 3.601092094037 +0101$2910361 -+255654810416
= TH % ,625
1 -3.632395648817 ~2.874712339277 263201535419 4.043635909290 1 ~1.244138477759  -170.550234264010 4337691554445 -4.373715798326
2 9,527300770074 1.143991406970 -.507480565979 -15,870871589814 2 1.952836920434 414.831328995205 082359563639 7+750596777515
3| «14.929652539158 8.483168536884 -, 062626809425 24,617677796140 3 ~5.684922236961  =396.956014659517 =1.704274989850 =2,9483584388844
4 12.036561592940 =-11,008963262393 +733963281157 »18,913124901679 4 5.949922251746 168%.690793998801 2.176472216415 ~2.027067964092
5 ~4,775183372476 S,387748933420 - 565814474893 7.227089426728 s =2+613864313589 »44.863265810480 =1,074511502923 1.755004840048
6 SEFTG:‘/:;:;g:aza; - -.955092992857 140491132935 -1,099778767378 6 SEP'N.J::!:::MN‘M 3.561449613245 193833521486 ~e 34903212744/
= 750 GTH = 4750
1 »4,953052609979 -2.487724201082 ~1,264183520335 3.994812887751 1 -1-311069194351‘ «170+381556787651 +185280034539 -1.82%719920205
2 14,565421845218 ~,204870158703 5.268398453282 ~15.369095412825 2 2.890462298066 414.402328948017 1.252644076194 1.96017831503%
3| ~z2.563970805194 10.335843695265 -8.704879138531 23.442219137723 3| -7.752425307923  -396.555219173¢928 ~3,965853478455 1.90847127603/7
4] 17.784146666053  ~12,256689282621 7.142982180277  n17.744237273946 L4 708059778456  185.535764851520 4.049775487101 -3.787392922090
5 ~6,926255028689 5.796412461140 ~2,922664019053 6.679081615906 s | -3.353084928038 ~41,849129012844 ~1.,786809025554 1912077852620
s SEP%ong:g:zsus o ~1,006369778988 . 481781636200 «1.000196581246 6 . 6:5:::6663593 3.564693378726 1294772632977 -+ 325187487275
M = .875 PY GTH = L8785
< ~5,868440684115 -2,463067844348 =2.245333525784 3.483487909972 1 ~1.34B952146307  =170.416309062602 +050489501630 -+693847378592
2| 18.009695491988 ~.229954907459 8.691393464436  ~13.252415677070 2 3.426161584811  414.618504758526 1920565330300 ze272/22141668
3| =27.713859517643 ~10,272417887845 ~13.997039089682 20.011194863382 3 «8.931808450652 ~396.963784177787 ~5.057349897366 3.221577642883
4 21.610213505373 ~12.132896799685 10.966099003162 ~15.004166691396 . £.833501869332 185.880400456226 4.858741889789 ~3.710592821401
5 -8.339031994548 5.720907143933 -4,286030941177 5.592210225766 L] =3,772004182143 ~41.965791486949 ~2.064706090264 14657262886530
6 SEP%SDK?‘ESHZH =.990525777026 1671807341270 ~.828602365324 6 o G::.sz't‘onnost 3.585559630298 329650232909 ~.264687274144
M LENGTH = 1,00 P LENGTH » 1,000 ¢
1 -6.421303632743 «2,575098958850 -2,7143191360% 3 1 =1,404360041804 -170.445869662762 -¢043867743054 ~+208472073580
2| 20.076262293823 117471495078 | 1o.95661230626  =10.689704394280 2| 3.02321c188071  414.800100619860 2.17600842028¢ 1967830523297
3 | -30.783594815820 9.564423368690 | ~16.323866823477 16.026618286359 31 -s.700481084742  -397.302409928088 ~5.294291566307 3.136221902050
4| 23.875659452732  -11,577043578763 12.560199795243  »11,932895092650 4 9.477850580660  186.161636436008 4.930920292633 ~3.099928882445
M . 169786360638 5.504004725471 4817129066848 4414912109990 3] -4.02212988709¢ ~42.095316155409 ~2,053187968393 1,302977602688
A 1.4232418808458 2.956813319437 1338910706088 0649022019569 . 1650511059020 3.601937078819 321955200023 ~+201859208167

TABLE III
FirteD CURVE COEFFICIENTS FOR THE TM;; MODE
N S11(N) S12{N)
HEAL PART IMAG., PART REAL PART IMAG, PART

SEPTUM LENGTH = ,125

A REASONABLE SIZE POLYNOMIAL WILL NOT PROVIDE A GOOD FiT,

SEPTUM LENGTH = ,250
4 | =340.271780431248 «29.7177735806642 -49,368899175649 32,981769057623
2 841.933177455211 22.684455880207 103,429388162112 -16.085186800541
3 ]-838.542672220501 48.729228828829 «74,106084508111 -56,214139109706
4 420.961636398897 -69.216337707461 17.879823029397 70,498311823466
5 |~106.489792957108 30.848073028391 1.479406825845 -29,652424639803
L] 10.86009363123% ~4,683818303326 -.863125289849 4,3200n4511659

SEPTUM LENGTH = ,375
1 [~356.768433627346 -74,142378752821 -23,855279841416 «9.013084622478
2 B67.469637018803 147.706590462439 45%,226666887101 79.343422707388
3 | ~845.625934156123 -91.531944140733 -26,.331757747971 -146,587733692467
4 413.816023765139 9.361027795152 1,064153866971 112.618777172247
5 [~101.63457562885¢ 8.,847245944605 3.445679008587 -39.549515815689
6 10.025208677361 -2.221623698480 -, 788296164592 5,260686539349

SEPTUM LENGTH = ,500
1 [-355.651655986912 “91.494251792456 -6,906366232001 ~26,649063937493
2 857.635330308403 1968.751439517509 6,591204677528 109,480833871566
3 |-827.4413411730835 -191.508899951295 7.421114401997 =160.392495868472
4 399.830153718357 44,4795383306981 -1 34140004006 110,076513939879
L] ~36,717381885391 «1.395050277249 48387785797 «36.,196731162581
6 9.370312697239 =1.032721796408 87701633080 4,614452077624

SEPTUM LENGTH = ,625
1 | ~352.433962121904 «99.002994158884 1.,148064296989 -30.1563523751107
2 845,859578196541 221.999899657566 ~11,648522250266 108,117828216563
3 {-811.214029617258 =-179.692200038334 22.741888575437 ~147,.044755175193
4 389.092568735359 61.423731333979 «18,148378404352 96,389564818382
5 ~93.268492871866 «~6.444630890387 6,564524782405 -30.733772909734
] B.9487521234664 -2 436524927316 -,894770266131 3.832730230320

SEPTUM LENGTH = ,750
1 |~349.9132946340650 =102.616005620438 4,404356926520 =2.202185354440
2 B837.42144818825) 233.011427984092 ~18,441305713530 8.267428096602
3 |=800,227251141041 -193.185787974015 27.440805128262 *11,048340805464
4 382,098390059545 69.597479525255 ~19,149189553281 6.871673916131
5 ~91.083856909826 -8,891547630926 6,397152463441 =2,025725063460
[ 8.669120371356 =.147078798831 -,827589035729 2226881034149

SEPTUM LENGTH = .875
1 |=348.307061473504 ~104.175861915246 %,407284371551 -1,240103373644
2 B832.180664924089 237.832719480866 -19.503723539077 3.996968955465
3 [-793.528515227226 «199.068994418485 26,802981360505 -4,698038844599
4 377.893285065692 73.143540923213 ~17,767579866158 2.,540698083879
5 ~89.754979756223 «9.944295543158 5,727896330876 -.622018103627
] 8,%511020810197 ~.023708052062 -,721943411241 051256182149

SEPTUM LENGTH = 1,000
1 |~347.351911169607 ~104.760452563459 5,251104430336 -.666741076657
2 829.103742876031 239.579569998750 =17.919466451239 1.727084558306
3 [-789.634782556531 ~201.129856470470 23,773156499973 -1.514870732082
4 375.469023125879 74.339161714051 -15,366826131157 .454086071313
5 ~89.041436604165 -10.287430640219 4,861265547848 .032694D074421
] B.421081923224 +0148836830245 -.603755667996 ~-.028119287490
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Fig. 11. Transmission system, with septums at periodic intervals.

in the + or —z directions. In the stopbands ¢=0 and
p1=—po. In view of the definition of \r, the correct choice
of \p, for a wave traveling away from a source, in the posi-
tive z direction, is for p>0, or | Ap,| > 1.0.

In the passbands, p=0, and the correct eigenvalue is
chosen in a different way. Note that the ratio of the com-
ponents of the eigenvectors is b1/a1=T, the reflection coeffi-
cient seen by a uniform waveguide looking into a periodic
waveguide. The correct A, is the one for which | T'| <1.0.

Using well-known relations [11] between the scattering
matrix and the scattering transfer matrix, the following can
be derived:

Ars =B+ /B —1 (26)

where B=Re[exp(a:D)/S1], D is the inter-septum spacing,
and Sy, is for the septum section alone. In the stopbands:

Attenuation per section = 20 logys | Ary |

T =10 27)

In the passbands:
exp (OélD) - )\FiSm

T = (28
Sn )

where \p, is chosen to make |T'| <1.0, the reference plane
is midway between septums, and Si; and Sy, are for the
septum section alone, as in the first part of this paper.

It has been assumed that all structures are lossless. Small
discontinuities are analogous to ideal transformers which
connect a main transmission line (TE,; mode) to undesired
transmission lines (TEq, TEq:;, and TM;; modes). When
these latter modes are operating in a stopband, the trans-
formers see an infinite VSWR and no energy is coupled
from the main line. Instead, the secondary sees a reactive
load with fields decaying at a rate of “p” nepers per period.
It follows that the reactive fields generated by each discon-
tinuity are insignificant more than two sections away when
the structure is designed for “p” in excess of 10 dB/period.

The design engineer must select an operating frequency
and estimate how much isolation is required by the ac-
curacy of his manufacturing process. From this, a septum
length is selected. This is aided by noting from (26) that the
isolation per period will vary from O dB to slightly less
than 6 dB in excess of the insertion loss of an isolated sep-

tum. Using (23) and Tables I, 11, and III, a simple computer
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routine can be written to enable the selection of the septum
spacing. Since a; is different for the TE;¢ and the TE,; and
TM,; modes, a compromise spacing may have to be used to
inhibit all three modes equally well. Even so, the spacing is
not unique, but is determined as a trade-off between band-
width and attenuation. Wide septum spacing minimizes at-
tenuation and narrow spacing maximizes the width of the
stopband.

The contour chart of Fig. 12 is quite useful as a design aid.
Ten decibel contour lines are shown for the TE,,, TE;3, and
TM,; modes. The closely spaced pairs of curves border
bandpass regions for which the modes are attenuated less
than 10 dB/period. The diamond shaped areas represent
acceptable ranges of spacings and frequency for which all
three modes are attenuated more than 10 dB/period. The
latter are designated as suppression areas.

The stop bandwidth for a particular septum spacing is
the horizontal width of the suppression areas, illustrated by
the arrows in the upper right corner.

The design problem simply consists of projecting upward
from the desired operating frequency to the largest spacing
for which the suppression area is centered and the bandwidth
is acceptable.

Figure 12 was generated for use at X-band frequencies
and is based on a septum length of 0.500 inch (0.5554) in
a 0.900 inch (2.286 cm) square waveguide. The region indi-
cated by the lower set of arrows represents a 300 MHz band-
width centered at 11.38 GHz, with a spacing of 4.45 inches
(11.3 cm). The attenuation is 67 percent of that of a con-
ventional waveguide.

When the septum length is varied, the sizes of the suppres-
sion areas vary, but the general shape of the curves does not
change. For shorter septums, the suppression areas decrease.
This is illustrated by the five areas in the lower center which
correspond to a septum length of 0.277a. For longer sep-
tums, the suppression areas expand until their borders al-
most coalesce for lengths greater than the waveguide width.

The peak attenuation per period, in the suppression re-
gions is much less for shorter septums. For L/a=1.11, this
can be as high as 44 dB/period; for L/a=0.555 it falls to
25 dB and for L/a=0.277 it falls to 15 dB. As a consequence,
septums for which L/a exceed 0.55 are preferable because
tuning adjustments are not essential to good performance.

The shaded area in Fig. 12 represents the range between
cutoff of the TE;; and TMy; modes and the lower limit of
usefulness of the fitted curves obtained by using (23). It is
recommended that this region be avoided.

RELATED PROBLEMS

The analysis presented in this paper may be adapted to
other symmetrical waveguide structures. The same basic ap-
proach may be used, but with a new 7T-matrix suitable for
the region between the input part and the center of the
structure. It would be necessary to show that incident TE
modes do not induce TM modes, or the converse, or else
to produce a new proof that there are no eigenvalues of the
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Fig. 12. Decibel contour chart for the TE;, mode (
TE;; mode (— — —), and the TM;; mode (- — ~ -).

),

resulting Fredholm matrix equations that are equal to one,

Only the problem of a square waveguide with a single
centered septum has been considered. An interesting prob-
lem is posed when the septum is moved off-center so that
b/a is no longer 0.5. The second and third line of (3)
represent a doubly infinite countable set of equations. They
can be reduced to one set by intermixing the equations
from each set. In this context, the convergence of the solu-
tions depends on the ratio of equations used from each set.
Mittra [12] has shown that for the semi-infinite septum, the
correct ratio is b/c, the ratio of the apertures. This suggests
that this is the ratio to be used for the finite length septum
but it would be an interesting problem to prove this.

Another logical step would be to consider a tall waveguide
with P parallel septums. Such a configuration would in-
crease (3) from three semi-infinite sets of equations to P plus
two sets. Igarashi [13] has considered the problem of the
fields scattered from uniformly spaced semi-infinite septums.
His Wiener-Hopf analysis should at least allow one to ob-
tain the coefficients of the various scattering matrices. The
principal question would be the method of truncating or
intermixing the sets of equations to obtain the correct solu-
tion.
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CONCLUSIONS

The analysis presented in this paper was motivated by a
desire to produce a structure capable of inhibiting three of
four possible propagating modes by using periodically
spaced septums. A new approach to solving the isolated-
septum problem has been presented, with fitted curve
coefficients tabulated for use over the frequency range of
interest. Using these coefficients and/or Fig. 12, it is a rela-
tively simple matter to obtain the parameters of the desired
structure.

The TE,, mode analysis is not limited to the square wave-
guide problem, but is also applicable to rectangular wave-
guides containing centered H-plane septums of arbitrary
length.
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